Current research is focused on the new cardiac markers that allow detect earlier stages of acute coronary syndromes than is possible with troponins. One of the most promising is CD40 ligand. Clinical data showed that higher levels of sCD40L are associated with a high risk of cardiovascular events. Elevation of soluble CD40 ligand identifies the subgroup of patients who are likely to benefit from antiplatelet treatment with IIb/IIIa antagonists. This marker can be useful for the assessment of risk stratification before planning stent implantation. Future investigation should include large, well-designed prospective observational cohort studies of patients in risk of ACS in order to evaluate the performance of sCD40L as a diagnostic test for ACS.

Key words: soluble CD40L, acute coronary syndromes, cardiomarkers.

SOLUBILNÝ LIGAND CD40 A AKÚTNE KORONÁRNE SYNDRÓMY

Súčasný výskum sa sústredí na molekuly, ktorými by sme mohli detekovať skôr štádiá akútnych koronárnych syndrómov ako sme schopní s troponínmi. Solubilný CD40L predstavuje unikátnu spojenie medzi trombózou a lokálnym zápalovým procesom. Podľa klinických údajov sú jeho zvýšené hladiny spojené s vysokým rizikom smrtelného infarktu myokardu, chronického srdcového zlyhania alebo rekurentného infarktu u pacientov s akútnym koronárnym syndrómom. Mohol by odhalitť pacientov, ktorí by profítovali z terapie IIb/IIIa antagonistami a stratifikovať riziko trombózy pred plánovanou implantáciou stentu. K definitívnemu stanovisku sú potrebné ďalšie štúdie.

Kľúčové slová: solubilný ligand CD40, akutné koronárne syndromy, cardiomarkery.
The mechanism of the sCD40L-induced cascade of platelet activation is not clearly known:

Platelets express CD40L within seconds after activation in vitro and in the process of thrombus formation in vivo. Like TNF- and interleukin-1, CD40L on platelets induces endothelial cells to secrete chemokines and to express adhesion molecules, thereby generating signals for the recruitment and extravasation of leukocytes at the site of injury. On endothelial cells or monocytes, the engagement of CD40 with CD40 ligand leads to the synthesis of adhesion molecules, chemokines, and tissue factor and causes activation of the matrix metalloproteinases that are known to contribute to atherothrombotic pathophysiological changes. Soluble CD40 ligand has a lysine-arginine-glutamic acid sequence that allows it to bind to platelet glycoprotein IIb/IIIa. It is possible that such binding is blocked when glycoprotein IIb/IIIa inhibitors are present, potentially altering the clot-stabilizing properties of sCD40L(13).

Clinical results

The plasma concentration of sCD40L is lower than 5.0 μg per liter in the steady state.

Clinical data showed that levels above 5.0 μg per liter are associated with a high risk of cardiovascular events – sCD40L independently predicts the composite of death/myocardial infarction(MI)/chronical heart failure and particularly of recurrent MI in patients with ACS(6). Notably, simultaneous assessment of sCD40L and TnI, the current standard for recurrent MI prediction, yields independent and complementary prognostic information, thus enabling more powerful prediction of adverse cardiac outcomes(20).

Clinically relevant concentration of sCD40L increased the expression of its receptor CD40 in human coronary artery endothelial cells (HCAECs). The CD40L-induced upregulation of CD40 may be mediated by oxidative stress and extracellular signal-regulated kinase 1/2 (ERK1/2). The sCD40L could enhance its biologic functions in the vascular system and contribute to endothelial dysfunciton and vascular disease(14).

Elevated plasma concentrations of soluble ligand CD40 at baseline predict a significantly increased risk for future cardiovascular events in apparently healthy women(15).

Furthermore, patients with unstable angina have higher plasma concentrations of sCD40L than healthy volunteers or those with stable angina(6).

Soluble CD40L plasma levels, however, did not correlate with those of CRP or cTnI(15).

Also in the CAPTURE study soluble CD40 ligand did not correlate with markers of inflammation, including C-reactive protein(16).

Although it has been shown that increased levels of C-reactive protein identify persons at risk for cardiovascular events, C-reactive protein may be a more general marker of inflammation and atherogenesis than soluble CD40 ligand and may be less reflective of the acute thrombotic process(17).

Although platelet-monocyte aggregates can provide useful information about the thrombotic or inflammatory state and can identify patients at high risk for cardiac events, their measurement can be difficult. As compared with platelet-monocyte aggregates, measurement of sCD40L (also called CD154) does not require flow cytometry and can be accomplished with stored samples(18).

Increased sCD40L before percutaneous coronary intervention may increase the rate of stent restenosis. Increased preprocedural sCD40L level is an independent predictor of stent restenosis. This marker can be useful for the assessment of risk stratification before planning stent implantation(19).

Possible medical impact

Although sCD40L has been characterized as a marker of thrombotic diseases, much less is known about its direct role in platelet function. It has been suggested that CD40L is an IIb/IIIa ligand, a platelet agonist, and contributes to stability of arterial thrombi.

The GP IIb/IIIa antagonists inhibit release of sCD40L from activated platelets(19).

Furman et al. examined the effects of glycoprotein (GP) IIb/IIIa antagonists (abciximab, epifibatide, and tirofiban) and other inhibitors on translocation of CD40L from intraplatelet stores to the platelet surface and on the release of soluble CD40L from platelets(19).

Statins, glitazones, glycoprotein IIb/IIIa inhibitors, and clopidogrel have been demonstrated to effectively reduce CD40L levels both in vitro and in vivo. Abciximab has been shown to reduce the occurrence of death or myocardial infarction during six months of follow-up in patients with ACS who had the highest levels of sCD40L(18).

Release of sCD40L from platelets is regulated, at least in part, by GP IIb/IIIa. In addition to their well-characterized inhibition of platelet aggregation, GP IIb/IIIa antagonists may obviate the proinflammatory and prothrombotic effects of sCD40L.

In patients with unstable coronary artery disease, elevation of soluble CD40 ligand levels indicated an increased risk of cardiovascular events generally. Elevation of soluble CD40 ligand identifies the subgroup of patients at high risk who are likely to benefit from antiplatelet treatment with abciximab. The prognostic value of this marker was validated in the patients with chest pain, among whom elevated soluble CD40 ligand levels identified those with acute coronary syndromes who were at high risk for death or nonfatal myocardial infarction. The increased risk in patients with elevated soluble CD40 ligand levels was significantly reduced by treatment with abciximab whereas there was no significant treatment effect of abciximab in patients with low levels of soluble CD40 ligand(19).

Also statins, beyond lipid lowering, have pleiotropic effects with favorable benefits against atherogenesis. Withdrawal of statin therapy has been demonstrated to abrogate vascular protective activity and even increase the incidence of thrombotic vascular events. The effect of statin on sCD40L level was abrogated after therapy withdrawal, and was independent of serum cholesterol level(19).

Conclusion

So far we don’t know whether the presence of sCD40L is only an epiphenomenal reflection of the inflammatory and thrombotic processes, or whether it directly contributes to acute coronary damage, but we possess encouraging data that may assist in defining unstable coronary syndromes. Although this marker needs further evaluation to establish its reliability in specific patient populations and clinical settings, this molecule may be an indicator of platelet activation and unstable plaque that can provide information in addition to the commonly used markers of cardiac necrosis.

Soluble CD40 ligand shows promise as an early marker for acute coronary syndromes but large, well-designed prospective observational cohort studies are necessary before it can be implemented as a diagnostic test. Most probably, there can be no single, perfect marker of the complex pathophysiological events contributing to unstable coronary syndromes, but it is possible that a combination of markers that reflect inflammation and thrombosis, before the onset of myocardial damage, would have considerable prognostic and therapeutic value. Future investigation should include large, well-designed prospective observational cohort studies of patients in risk of ACS in order to evaluate the performance of sCD40L as a diagnostic test for ACS.

Incorporation into a “multimarker strategy” may be more likely to yield positive results. However, there is insufficient information to recommend its implementation as a diagnostic test at this time.
References

1. Henn V, Slupsky JR, Grafe M et al. CD40 ligand on activated platelets triggers an inflammato-

2. Hollenbaugh D, Grosmaire LS, Kulas CD et al. The human T cell antigen gp39, a member of
the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with

3. Grewal IS, Flavell RA. The CD40 ligand. At the center of the immune universe? ImmunoJ Res
1997;16:59–70.

4. May AE, Kalsch T, Massberg S et al. Engagement of glycoprotein ib/IIa (alpha/IIb/beta3) on
platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial

6. Aukrust P, Muller F, Ueland T et al. Enhanced levels of soluble and membrane-bound CD40 li-
gand in patients with unstable angina. Possible reflection of T lymphocyte and platelet involve-

8. Lee Y, Lee WH, Lee SC et al. CD40L activation in circulating platelets in patients with acute co-

9. Peng DQ, Zhao SP, Li YF et al. Elevated soluble CD40 ligand is related to the endothelial adhe-

10. Heeschen C, Dimmel M, Hamm CW et al. Soluble CD40 ligand in acute coronary syndro-

12. Freedman J, Loscalzo J. Platelet-monocyte aggregates: bridging thrombosis and in flamma-

13. Andre P, Prasad KS, Denis CV et al. CD40L stabilizes arterial thrombi by a beta3 integrin–de-

348:1163–1165.

17. Ridker PM, Hennekens CH, Buring JE et al. C-reactive protein and other markers of inflamma-

18. Furman MI, Krueger LA, Linden MD. Release of soluble CD40L from platelets is regulated by

20. Varo N, de Lemos JA, Libby P et al. Soluble CD40L: risk prediction after acute coronary syn-

21. Turker S, Guneri S, Akdeniz B et al. Usefulness of preprocedural soluble CD40 ligand for pre-
dicting restenosis after percutaneous coronary intervention in patients with stable coronary arte-